Cambridge International AS & A Level

MATHEMATICS		9709/41
Paper 4 Mechanics	Octo	ber/November 2020
MARK SCHEME		
Maximum Mark: 50		
	Published	

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2020 Page 2 of 13

Mathematics Specific Marking Principles Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing. Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected. Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw). Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread. Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

© UCLES 2020 Page 3 of 13

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 - A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
 - For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
 - The total number of marks available for each question is shown at the bottom of the Marks column.
 - Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
 - Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2020 Page 4 of 13

9709/41 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

& A Level – Mark Scheme October/November 2020

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2020 Page 5 of 13

	PUBLISHED			
Question	Answer	Marks	Guidance	
1(a)	$6 \times 2.5 = 2.5v + 5v$	M1	Apply conservation of momentum, 3 terms implied	
	$v = 2 \text{ ms}^{-1}$	A1		
		2		
1(b)	Use KE = $\frac{1}{2}$ mv^2 either before or after collision	M1	Allow this for either particle	
	$KE(before) = 0.5 \times 2.5 \times 6^{2}$ $KE(after) = 0.5 \times 7.5 \times 2^{2}$	A1 FT	Both correct FT on v	
	Loss of KE = 30 J	A1		
		3		

Question	Answer	Marks	Guidance
2(a)	$P = 350 \times 20$	M1	Using $P = Fv$
	P = 7 kW	A1	
		2	
2(b)	$15000 = DF \times 20 [DF = 750]$	B1	Using $P = Fv$
	DF - 350 = 1400a	M1	Use Newton's 2 nd law, 3 terms
	$a = \frac{2}{7} \text{ ms}^{-2}$	A1	a = 0.286
	7 113		
		3	

© UCLES 2020 Page 6 of 13

	TODEISHED			
Question	Answer	Marks	Guidance	
3	Resolve forces either horizontally or vertically	M1	Correct number of relevant terms	
	$P\cos\theta = 12 + 8\cos 30 - 10\cos 45 [= 11.857]$	A1		
	$P\sin\theta = 10\sin 45 - 8\sin 30 \ [= 3.071]$	A1		
	$P = \sqrt{\left(11.857^2 + 3.071^2\right)}$	M1	OE. Use of correct method for finding <i>P</i>	
	$\theta = \tan^{-1} \left(\frac{3.071}{11.857} \right)$	M1	OE. Use of correct method for finding θ	
	$P = 12.2 \text{ and } \theta = 14.5$	A1	Both correct	
		6		

Question	Answer	Marks	Guidance
4	$[v = 3t^2 - 18t (+ C)]$	*M1	Attempt to integrate a
	$[s = t^3 - 9t^2 (+ C)]$	#M1	Attempt to integrate <i>v</i>
	$v = 3t^2 - 18t s = t^3 - 9t^2$	A1	Both integrals correct
	$v = 0, 3t^2 - 18t = 0 [t = 6]$	*DM1	Attempt to find t when $v = 0$
	$s = 6^3 - 9 \times 6^2 - [0]$	#DM1	Substitute limits correctly into <i>s</i>
	s = 108 m	A1	Answer must be positive
		6	

© UCLES 2020 Page 7 of 13

Question	Answer	Marks	Guidance
5(a)	0.8g - T = 0.8a, $T - 0.2g = 0.2a$,	M1	Apply Newton's 2 nd law to either particle or to the system
	For system: $0.8g - 0.2g = (0.8 + 0.2)a$	A1	Any 2 correct equations
	Attempt to solve for either a or T	M1	
	$a = 6 \text{ ms}^{-2} \text{ and } T = 3.2 \text{ N}$	A1	AG. Both correct
		4	
5(b)	$v^2 = 2 \times 6 \times 0.5$	M1	Attempt to find v or v^2 as 0.8 kg particle reaches the ground using a from $5(\mathbf{a})$
	0 = 6 - 20s	M1	Attempt to find the extra height reached by 0.2 kg particle using v^2 from previous M1 mark
	Greatest height = $0.5 + 0.5 + 0.3 = 1.3 \text{ m}$	A1	
		3	

Question	Answer	Marks	Guidance
6(a)	KE (final) = $\frac{1}{2} \times 1500 \times 20^2 + \frac{1}{2} \times 750 \times 20^2$ KE (initial) = $\frac{1}{2} \times 1500 \times 30^2 + \frac{1}{2} \times 750 \times 30^2$	B1	Use KE = $\frac{1}{2}mv^2$ for any two of the four elements
	PE gain = $2250 \times 10 \times 800 \times 0.08$	B1	
	WD against friction = 600×800	B1	
	$\frac{1/2 \times 2250 \times 30^2 + DF \times 800 = 600 \times 800}{+ \frac{1}{2} \times 2250 \times 20^2 + 2250 \times 10 \times 800 \times 0.08}$	M1	Use energy equation.
	DF = 1700 N	A1	DF = 1696.875 N
		5	

© UCLES 2020 Page 8 of 13

PUBLISHED

Question	Answer	Marks	Guidance
or	2400 - 600 = 2250a or T - 200 = 750a and $2400 - 400 - T = 1500a$	M1	Apply Newton's second law to the system or to each of the car and trailer separately
		A1	Two correct equations
	Attempting to solve for a or for T	M1	
	$T = 800 \text{ N} \text{ and } a = 0.8 \text{ ms}^{-2}$	A1	
		4	

Question	Answer	Mark	Guidance
7(a)	7(a) $0.2 \times 10 \times 0.5 = \frac{1}{2} \times 0.2 \times v_B^2$	M1	Attempt PE or KE for motion from A to B
		M1	Attempt PE loss = KE gain from A to B
	$v_B^2 = 10$	A1	
Alternative method for the first 3 marks			
	$0.2 \times 10 \times \sin 30 = 0.2a, a = 5$	(M1)	Attempt to find acceleration a for motion from A to B
	$v_B^2 = 0^2 + 2 \times 5 \times 1$	(M1)	Use $v^2 = u^2 + 2as$ in attempt to find speed at B
	$v_B^2 = 10$	(A1)	

© UCLES 2020 Page 9 of 13

Question	Answer	Marks	Guidance	
7(a)	THEN, either this method for the next 5 marks			
	$R = 0.2 \times 10 \times \cos 30 = \sqrt{3}$	B1		
	$F = \frac{\sqrt{3}}{2} \times 0.2 \times \frac{\sqrt{3}}{2} \times 10 = 1.5$	M1	For using $F = \mu R$ where R must be a component of $0.2g$	
	PE loss = $0.2 \times 10 \times 0.5 = 1$ WD against $F = 1.5 \times 1$	M1	Attempt to find either PE loss or WD against F from B to C	
	$\frac{1}{2}0.2 \times 10 + 0.2 \times 10 \times 0.5 = 1.5 \times 1 + \frac{1}{2}0.2v_C^2$	M1	Apply work-energy equation for motion from B to C as KE at $B + PE$ at $B = WD$ against $F + KE$ at C with $v_B \neq 0$	
	$v_c = \sqrt{5} = 2.24 \text{ms}^{-1}$	A1		
	OR, this method for the next 5 marks			
	$R = 0.2 \times 10 \times \cos 30 = \sqrt{3}$	(B1)		
	$F = \frac{\sqrt{3}}{2} \times 0.2 \times \frac{\sqrt{3}}{2} \times 10 = 1.5$	(M1)	For using $F = \mu R$ where R must be a component of $0.2g$	
	$0.2 \times 10 \sin 30 - 1.5 = 0.2a a = -2.5$	(M1)	Attempt to find acceleration a for motion from B to C	
	$v_c^2 = 10 + 2 \times -2.5 \times 1$	(M1)	Use $v^2 = u^2 + 2as$ in attempt to find v_c using $v_B \neq 0$	
	$v_c = \sqrt{5} = 2.24 \text{ ms}^{-1}$	(A1)		
		8		

© UCLES 2020 Page 10 of 13

Question	Answer	Marks	Guidance
7(a)	Alternative method for question 7(a)		
	PE loss = $0.2 \times 10 \times 2 \sin 30 = 2$	M1	Attempt PE loss for motion from A to C
	$KE gain = \frac{1}{2} \times 0.2 \times v_C^2$	M1	Attempt KE gain for motion from A to C
	Both PE loss and KE gain correct	A1	
	$R = 0.2 \times 10 \times \cos 30 = \sqrt{3}$	B1	
	$F = \frac{\sqrt{3}}{2} \times 0.2 \times \frac{\sqrt{3}}{2} \times 10 = 1.5$	M1	For using $F = \mu R$ where R must be a component of $0.2g$
	WD against $F = 1.5 \times 1$	M1	Attempt WD against F
	$0.2 \times 10 \times 1 = 1.5 \times 1 + \frac{1}{2} \times 0.2 \times v_C^2$	M1	Attempt work-energy equation for motion from A to C
	$v_c = \sqrt{5} = 2.24 \mathrm{ms}^{-1}$	A1	
		8	

© UCLES 2020 Page 11 of 13

Question	Answer	Marks	Guidance
7(b)	0 = 10 + 2a [a = -5]	M1	Attempt to find a for motion from B to C, using $v_B^2 = 10$, $v_C = 0$
	$0.2 \times 10 \times \sin 30 - F = 0.2 \times -5$	M1	Attempt Newton's 2 nd law for motion from <i>B</i> to <i>C</i>
	$2 = \mu \sqrt{3}$	M1	Use $F = \mu R$ where R is a component of $0.2g$ but $R = 0.2g$ is M0
	$\mu = \frac{2}{\sqrt{3}}$	A1	Any correct exact form such as $^2/_3\sqrt{3}$
	Alternative method for question 7(b)		
	$PE loss = 0.2 \times 10 \times 1 \sin 30 = 1$	M1	Attempt PE loss for motion from B to C
	$1 + \frac{1}{2} \times 0.2 \times 10 = F \times 1$	M1	Work-Energy equation for motion from B to C in the form PE at B + KE at B = WD against F using $v_B^2 = 10$, $v_C = 0$
	$F = \mu\sqrt{3}$	M1	Use $F = \mu R$ leading to an equation in μ where R is a component of $0.2g$
	$\mu = \frac{2}{\sqrt{3}}$	A1	Any correct exact form such as $^2/_3\sqrt{3}$

© UCLES 2020 Page 12 of 13

TODAMED			
Question	Answer	Marks	Guidance
7(b)	Alternative method for question 7(b)		
	$PE loss = 0.2 \times 10 \times 2 \sin 30 = 2$	M1	Attempt PE loss for motion from A to C
	$2 = F \times 1$	M1	Work-Energy equation for motion from B to C
	$F = \mu\sqrt{3}$	M1	Use $F = \mu R$ leading to an equation in μ where R is a component of $0.2g$
	$\mu = \frac{2}{\sqrt{3}}$	A1	Any correct exact form such as $^2/_3\sqrt{3}$
		4	

© UCLES 2020 Page 13 of 13